Inferring single-trial neural population dynamics using sequential auto-encoders

Pandarinath et al., 2018, *Nature methods Nhat Le, NeuroComp meeting, Dec 11, 2018*

Motivation

• Dynamical systems perspective: dynamical systems underlie the pattern of neural populations

Motivation

• Dynamical systems perspective: dynamical systems underlie the pattern of neural populations

Problem: trajectories often computed based on trial averages

→ Can we uncover underlying dynamics of single trials?

Part I: The LFADS basic architecture

- LFADS assumes an underlying *dynamical system* (*recurrent neural network*) that generates spike trains
- 2. LFADS as a form of *factor analysis*
- 3. LFADS as a *variational autoencoder*

Part I: The LFADS basic architecture

1. LFADS assumes an underlying *dynamical system* (*recurrent neural network*) that generates spike trains

2. LFADS as a form of *factor analysis*

3. LFADS as a *variational autoencoder*

 $\dot{g}(t) = F(g(t), u(t))$

Observed spikes depend on

- (1) Underlying dynamics (F)
- (2) Initial conditions (g_0)
- (3) Inputs from other brain areas (*u*)
- (4) Spiking variability

 $\dot{g}(t) = F(g(t), u(t))$

To model underlying dynamics:

Recurrent neural networks (simple)

Yeung, CS231n (Stanford) 2017, lecture13

RNN variant: Gated Recurrent Unit (GRU)

Simple

GRU

$$g_{t} = \tanh(W^{g}[g_{t-1}, x_{t}]) \quad c_{t} = \tanh(W^{c}[x_{t}, r_{t} \odot g_{t-1}])$$
$$g_{t} = u_{t} \odot g_{t-1} + (1 - u_{t}) \odot c_{t}$$

- A combination of previous state 'memory' and updated state

- Prevents vanishing gradients

 $\dot{g}(t) = F(g(t), u(t))$

Part I: The LFADS basic architecture

1. LFADS assumes an underlying *dynamical system* (*recurrent neural network*) that generates spike trains

2. LFADS as a form of *factor analysis*

3. LFADS as a *variational autoencoder*

Factor Analysis

Assumes data y (dimension q) is generated by a latent variable x (dimension p) where p < q

$$\mathbf{y}_{:,t} \mid \mathbf{x}_{:,t} \sim \mathcal{N} \left(C \mathbf{x}_{:,t} + \mathbf{d}, R \right),$$

$$p \times T$$

Previous methods to uncover latent factors

 $\mathbf{y}_{:,t} \mid \mathbf{x}_{:,t} \sim \mathcal{N} \left(C \mathbf{x}_{:,t} + \mathbf{d}, R \right),$

 Gaussian process factor analysis: each dimension of x is a Gaussian process

 $\mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \ K_{i}
ight)$

 Poisson feed-forward linear dynamical system (PfLDS): y is generated from x through a rate λ and a noise model P

$$x_{rti} | \mathbf{z}_{rt} \sim \mathcal{P}_{\lambda} \left(\lambda_{rti} = [f_{\psi}(\mathbf{z}_{rt})]_i \right)$$

рх7

Low-dimensional factors which generate firing rates

LFADS can recover low-dimensional factors

19

Part I: The LFADS basic architecture

- 1. LFADS assumes an underyling *dynamical system* (*recurrent neural network*) that generates spike trains
- 2. LFADS as a form of *factor analysis*
- 3. LFADS as a *variational autoencoder*

Autoencoders

A form of **unsupervised learning**

Uncover hidden structure of data (in LFADS: spike trains)

After training, features (factors) will represent a compressed structure of the input data

Autoencoders (Feature learning)

Yeung, CS231n (Stanford) 2017, ²ecture13

Reconstructed data

Variational Autoencoder (VAE)

• Goal: try to learn the probability distribution p(x) that generates training data x

VAEs define intractable density function with latent z: $p_{\theta}(x) = \int p_{\theta}(z)p_{\theta}(x|z)dz$ Input data $x \longrightarrow z$ $z \longrightarrow z$ follows some Latent variable \hat{x}

parameterized distribution

Variational Autoencoder (VAE)

• Goal: try to learn the probability distribution p(x) that underlie training data x

VAEs define intractable density function with latent z:

$$p_{\theta}(x) = \int p_{\theta}(z) p_{\theta}(x|z) dz$$

Variational Autoencoder (VAE): Training

Yeung, CS231n (Stanford) 2017, Tecture13

Variational Autoencoder (VAE): Training

 $\log p_{\theta}(x^{(i)}) =$

Yeung, CS231n (Stanford) 2017, Tecture 13

Summary: the LFADS basic architecture

- 1. LFADS assumes a *dynamical system* underlying spike trains
- 2. LFADS uncovers *low-dimensional factors* that underlie firing rates
- 3. LFADS is trained as a variational autoencoder (VAE)

LFADS uncovers single-trial rotation dynamics

LFADS uncovers single-trial rotation dynamics

LFADS performs well on held-out trials

Part II: Variants of LFADS

- 1. Dynamic neural stitching
- 2. LFADS with external perturbations

 Consistent trajectories across sessions → consistent with a single underlying dynamical system d Condition-averaged LFADS factor trajectories across sessions

 Good decoding of kinematic variables using LFADS factors

TITLE

е

1

0.8

LFADS uncover structure of perturbations

- Behavior of dynamical system often disturbed by external signals from other brain areas
- \rightarrow Can we infer these signals on single-trials?

 g_0 and u(t) are the latent variables z in the VAE

LFADS uncover structure of perturbations

External inputs during a cursor manipulation task when a perturbation is given in some of the trials

LFADS uncover structure of perturbations

Oscillatory inputs before movement initiation, synchronized to LFPs

Discussion

1. In what context would LFADS be appropriate to model neural data? When will it *not* be appropriate?