Lab meeting 11/28/17

Nhat Minh Le

Overview

Part I: Techniques to quantify stretching of neural data

Part II: Noise in two-neuron model

Part I: Stretching of neural data

Goal: given a PSTH of a neuron at different T_p 's, can we quantify the degree of the neuron's temporal stretching?

Methods

- 1. Time-warped PCA
- 2. Grid search of optimal stretch factor

Examples of raw data from two neurons

Time-warped PCA

Poole et al. Time-warped PCA: simultaneous alignment and dimensionality reduction of neural data

Warp functions are parametric

tw-PCA returns the optimal parameters (a or δ) that result in the 'best' alignment.

Since the problem is nonconvex, a good initial guess is important to avoid local minima

5

Time-warped PCA: initialization modes

Problem is *non-convex* Different initialization modes can lead to different results

'Scale' mode

'Shift' mode

'Identity' mode

'Scale' mode

'Shift' mode

time

Time-warped PCA

- Strengths:
 - Can align data that involve simultaneous recordings
 - If the initial guess is good, fast convergence
- Weaknesses:
 - Performance and results strongly depends on initialization
 - Currently only supports linear warp types
 - More computationally intensive

Grid search of stretch factor

Hypothesis: stretch factor = Tp / Tp_{ref}

Example neuron for which hypothesis holds

Example neuron for which hypothesis does not hold

Stretching in thalamus, caudate and cortex

Stretching in thalamus, caudate and cortex

Grid search of stretch factor

- Strengths:
 - Finds global optimum
 - Fast
 - Can handle arbitrary warp functions
- Weakness:
 - Does not handle population data
 - Imprecise, due to inefficient search of factor space
- Future direction: start from a coarse grid search and use gradient descent to reach the minimum point

Part II: Noise in two-neuron model

Scaling invariance - observation

In interval production task, standard deviation scales linearly with mean

Noise in production times can be caused by: a. Fluctuations in the input during a trial

b. Fluctuations in the mean of the input across trials σ_{μ}

Which factor(s) can account for the observed scale invariance?

Trajectory

Distribution of time to threshold

Combined effect of σ_{σ} and σ_{μ}

Scaling invariance

Effect of σ_{σ}

Future work

Cascade model to correct bias in input, given sensory feedback

Cascade corrects bias in individual inputs

Question: how does the network learn the correct threshold to correct itself?

What I'm working on

Question: how does the network learn the correct threshold to correct itself?