
 

 

State-dependent Reward Encoding in Cortical Activity During Dynamic Foraging 
 
Summary. Multiple brain regions are involved in integrating reward to drive action selection, with rich 
representations of reward history in the striatum, retrosplenial cortex, and frontal areas. A major challenge in 
dissecting the circuits that govern reward-guided behavior is the existence of multiple strategies for reward 
maximization. For instance, in dynamic environments, mice can engage in both model-free behavior, where they 
update action values from trial to trial, and inference-based learning, where they use an internal model to infer 
the current world state. These two modes are challenging to distinguish, and can even intermix within training 
sessions, complicating studies of neural mechanisms that rely on session-averaged activity. Here, we tackled these 
problems by developing a computational approach to characterize dynamic shifts in behavioral strategies. We 
first simulated the choice sequences of model-free and inference-based agents, and built decoders of their 
underlying strategy using features of the choice transition around the block switches. We built on this analysis 
with a new state-space method, block Hidden Markov Model, which infers the hidden state that governs the 
behavior in each block of trials. Our analysis revealed a diverse mixture of both model-free and inference-based 
strategies even in expert animals, with an increased reliance on inference-based behavior with training. We used 
1-photon widefield imaging to investigate how mesoscopic cortical activity varies with the inferred hidden state. 
We found that reward encoding is strongly state-dependent: reward is weakly encoded in the disengaged state, 
transiently encoded in the model-free state, and persistently encoded in inference-based learning. Activity in 
diverse cortical regions, including the somatosensory, motor, frontal and visual areas, showed different patterns 
of correlation with reward in each mode. Our results suggest distinct neural mechanisms that underlie different 
modes of dynamic foraging, and highlight the importance of hidden states in the dissection of reward circuits. 
Signatures of model-free and inference-based 
behavior. We trained head-fixed mice on a 
dynamic foraging task which alternates between 
two states, where left or right wheel turns were 
more likely to be rewarded (Fig. 1a). To determine 
whether model-free and inference-based behavior 
can be dissociated based on the animals’ choice 
sequences, we simulated the behavior of Q-
learning agents (parameterized by the learning rate 
and exploration) and inference-based agents 
(parameterized by its internal model). We 
measured four features of the choice transition 
function (Fig. 1b), and identified five distinct 
regimes in the Q-learning and inference-based 
spaces (Fig. 1c) which can be reliably decoded 
based on the choice sequences (Fig. 1d).  
Block Hidden-Markov Model reveals shifts in 
behavioral strategies in single sessions. Although 
the session-average behavior of mice matched the 
model-free strategy, we found that this session-
average masks the use of multiple strategies within 
single sessions. We developed a computational 
method, block Hidden Markov Model 
(blockHMM), to classify the behavioral strategies 
in single blocks. This method reveals four hidden 
states with distinct underlying choice switching 
dynamics: (1) random behavior, (2) delayed 
switching, consistent with model-free learning (3) 
immediate switching, consistent with inference-

Fig 1. Model-free and inference-based behavior in dynamic 
foraging. a) Dynamic foraging task (left), and trial structure (right) for 
head-fixed mice. Mice were trained on 100-0, 90-10, 80-20 and 70-30 
environments. b) The session-average behavior of rodents and 
simulated agents might be represented by a sigmoidal transition 
function with four parameters: switch delay s, switch slope α, 
exploration (lapse) ε, and overall foraging efficiency, E c) 
Computational simulation of Q-learning and inference-based agents. 
(Top) Q-learning and inference-based spaces of parameters for the two 
types of agents. (Bottom) Average behavioral features (mean ± standard 
error) of agents belonging to each performance regime. d) Decoding 
accuracy of cluster identity using a kNN classifier (k = 5). 



 

 

based strategy, and (4) fast switching but with high lapse rate (Fig. 2). We found that animals employed a mixture 
of strategies even at the expert stage, and with training, there was a decrease 
in the random mode and an increase in inference-based, fast-switching mode. 

 

Cortical encoding of reward and reward history is state-dependent. 
Using the hidden states inferred by blockHMM, we evaluated the cortical 
representation of reward associated with each behavioral mode. We used 1-photon widefield imaging to record 
the cortex-wide activity during the task, and examined the relationship between cortical activity and rewards on 
current and previous trials, split across the random, model-free and inference-based modes. The regression 
coefficients corresponding to these trial subsets showed a strong dependence on the underlying state. In the 
random blocks, cortical activity correlates weakly with reward and showed little history encoding (Fig. 3a, top 
row). In model-free blocks, a large part of the cortex and especially the somatosensory-motor regions were 
strongly negatively correlated with current reward, but showed short-term history encoding (Fig. 3a, middle row). 
This short-term reward representation was also seen in reward decoding analysis, which showed a higher decoding 
of current reward in model-free trials (Fig. 3b). In contrast, inference-based blocks (fast-switching) involved a 
persistent encoding of reward across past trials (Fig. 3a, bottom row). Inference-based behavior also involved a 
more positive reward correlation in frontal cortical areas. These analyses support a model of cortical reward 
integration that is strongly state-dependent: reward encoding in the cortex might be 
attenuated in the disengaged state, transiently represented in model-free learning for 
trial-to-trial updates, and integrated and maintained over multiple trials to contribute 
to model-based inference.  

Fig 2. Block Hidden Markov Model. a) 
Schematic of block Hidden Markov 
Model (blockHMM). The vector of all 
choices in a block, y, is governed by a 
hidden state, zi, whose value transitions 
from block to block according to 
transition matrix M (indicated by 
arrows). Each zi = k є {1, 2, ..., K} 
defines a different transition function 
which is a sigmoidal function with slope 
αk, offset sk, and lapse εk. b) Example 
behavior generated by the model in a. 
The circles on top represent the hidden 
states, zi, which evolve according to a 
Markov chain. c) The likelihood 
equations of the generative model. Each 
hidden state governs the choice sequence 
of the entire block according to the 
sigmoidal transitions in a (see equations 
2 and 3). The log-likelihood of the 
observed choices in the block is the sum 
of the log-likelihoods of individual trials 
(equation 1).  

 

Fig 3. Dependence of 
mesoscopic cortical activation 
patterns on reward and reward 
history. a) Results of pixel-based 
regression of whole-cortex 
activity against current and 
previous trial outcomes. Here R(t) 
= 1 for rewarded trials and 0 for 
error trials. Regression was done 
separately for each behavioral 
mode. Lapse mode (mode 4) was 
not present for this session. b) 
Decoding of reward and reward 
history based on the activity of six 
cortical regions (M1, M2, 
somatosensory, retrosplenial, PPC 
and V1). Shown are average 
performances (mean ±  standard 
error)  across n = 6 animals (22 
sessions). 

 


