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What is the goal of doing 
(neuroscience) experiments?

Is it…

• To further knowledge?

• To test a hypothesis?

• To explore and observe?

• To demonstrate a method?

• To graduate?



The scientific process



Frequentist vs Bayes

• Frequentist probability: P(A) represents long-run frequency 
over a large run of repetitions of the experiment.

• Bayesian probability: P(A) represents the degree of belief / 
plausibility about A



Generative (statistical) model

A generative model describes our beliefs about:
• The sources of error or uncertainty in the data

• Uncertainty in the underlying parameters of the model

θ y



Data is generated from hidden (latent) 
parameters

• ‘Data’: any observable measurements
• Firing rate

• Behavior

• Protein levels

• Sentences in a language

• ‘Hidden’ parameters govern the generation of data
• Resting potential of neurons

• Emotional state

• Gene sequence

• Grammar rules
θ y



Bayes rule

Parameter 

(not observed)
Data (observed)



Our job is to infer hidden parameters, 
given observed data

• Bayesian analysis is composed of three steps:

1. Build a model, i.e. define a likelihood p(D|θ) and a prior p(θ)

2. Compute the posterior p(θ|D)

3. Report some summary of the posterior (mean and standard 
deviation)



An example: neuron firing rate

• Average firing rate R modelled as normally distributed

• Parameters of the model: mean μ and standard deviation σ

• Observed data: average firing rates R for different trials

Inference objective: infer the likely values of μ and σ based on 
observed firing rates.

μ R

σ N observations
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Exact Inference

• Evaluate the posterior directly using Bayes’ rule

• Main challenge: compute the evidence (denominator)



Conjugate priors

Posterior can be easily evaluated if likelihood and priors come 
from ‘conjugate families’ 



Approximate inference

• Most of the time, exact inference is not possible

 Have to resort to approximate inference

• Two ways of doing this
• Approximate inference by optimization

• Approximate inference by sampling



Approximate inference by optimization
(aka Variational inference)

• Can’t evaluate posterior P(θ | y) directly 

• Strategy: approximate it with some distribution q(θ) 

‘Distance’ measure



Choices

‘Distance’ measure

1. Choice of distance measure is KL-divergence

2. Choice of ‘nice’ functions is often the mean-field approximation

3. Choice of optimization procedure is coordinate ascent



Objective: minimize distance



To minimize distance, perform coordinate ascent



Free energy

• Free energy is the ELBO!

• Brief explanation:

The world’s generative model,

a joint distribution over observations, 

outcome probabilities, state-related 

variables, and the agent’s policies

The agent’s approximation of the 

generative model

Agent’s objective: minimize KL(P || Q)  maximize ELBO = minimize free energy



Approximate inference by sampling

• Can’t evaluate posterior P(θ | y) directly

• Strategy: draw samples from the posterior



Markov Chain Monte Carlo (MCMC)





Sampling techniques

• Many different ways to sample
• Importance sampling

• Rejection sampling

• MCMC (Markov Chain Monte Carlo)
• Gibbs sampling

• Slice sampling

• HMC

• NUTS



A Markov Chain

A random walk in which the next step depends only on where you are now



MCMC methods

• Idea: take random walks in the parameter space to sample from 
the target distribution



MCMC convergence

• To ensure that the final samples 
indeed come from the target 
distribution, we need to satisfy a 
few conditions

• Detailed balance: eventually 
converges to the target distribution

• Ergodicity: able to get to any point 
in parameter space in finite time



Some MCMC algorithms

1. Random-walk Metropolis-Hastings
- Propose new candidate states, accept/reject the proposal with some 
probability

2. Gibbs sampling
- For n parameters, fix (n – 1) of them and sample from the conditional 
distribution

3. Hamiltonian Monte Carlo
- Make use of extra momentum variables to flow through parameter 
space



Demo of MCMC in action



How can I get started with these 
inferences for my data analysis?



Stan will help you!

State-of-the-art platform for statistical modeling

Supports:

• Full Bayesian statistical inference with MCMC sampling 

(NUTS, HMC)

• Approximate Bayesian inference with variational

inference (ADVI)

Interfaces with most popular data analysis languages 

(Python, MATLAB, R)



Simple syntax

data {

int<lower=0> N;          // number of neurons measured

real y[N];               // firing rates

// prior parameters

real mu_0; 

real<lower=0> rho_0; 

real<lower=0> alpha_0; 

real<lower=0> beta_0; 

}



parameters {

real mu; 

real<lower=0> tau;  //precision 

}

model {

tau ~ gamma(alpha_0, beta_0); 

mu ~ normal(mu_0, 1 / (rho_0 * tau));

for( n in 1:N )

y[n] ~ normal(mu, 1 / tau);

}

Simple syntax


