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What is the goal of doing
(neuroscience) experiments?

Is it...

* To further knowledge?

* To test a hypothesis?

* To explore and observe?
 To demonstrate a method?
 To graduate?




The scientific process
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Frequentist vs Bayes

* Frequentist probability: P(A) represents long-run frequency
over a large run of repetitions of the experiment.

« Bayesian probability: P(A) represents the degree of belief /
plausibility about A



Generative (statistical) model

A generative model describes our beliefs about:
* The sources of error or uncertainty in the data

« Uncertainty in the underlying parameters of the model

O




Data is generated from hidden (latent)
parameters

 ‘Data’: any observable measurements
* Firing rate
« Behavior
* Protein levels
« Sentences in a language
* ‘'Hidden’ parameters govern the generation of data
« Resting potential of neurons

« Emotional state
* Gene sequence @ @
« Grammar rules




Bayes rule

Parameter Data (observed)
(not observed) /
PO |y - | 0) P

: likelihood x prior
posterior = : .
evidence



Our job is to infer hidden parameters,
given observed data

« Bayesian analysis is composed of three steps:
1. Build a model, i.e. define a likelihood p(D|0) and a prior p(0)
2. Compute the posterior p(6|D)

3. Report some summary of the posterior (mean and standard
deviation)

VoS




An example: neuron firing rate

* Average firing rate R modelled as normally distributed
 Parameters of the model: mean y and standard deviation o
* Observed data: average firing rates R for different trials
Inference objective: infer the likely values of y and o based on

observed firing rates.
OO
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An example: neuron firing rate

* Average firing rate R modelled as normally distributed
 Parameters of the model: mean y and standard deviation o
* Observed data: average firing rates for different trials

Inference objective: infer the likely values of y and o based on
observed firing rates.
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Exact Inference

« Evaluate the posterior directly using Bayes' rule
« Main challenge: compute the evidence (denominator)

P(y| 6)P(0)
PO = ' -,
: likelihood x prior
posterior = .

evidence



: likelihood x prior
posterior = : .
evidence

Conjugate priors

Posterior can be easily evaluated if likelihood and priors come
from ‘conjugate families’

Likelihood Conjugate prior Posterior update

X ~ Normal(p=z, 1) z ~ Normal(p,, 0,

X+ M /o2 1
z|><~NormaI( ° 20, 2)
1+0, 1+0

0
x ~ Normal(u=0, 6%=z) | z ~ InvGamma(a, B) Z | x ~ InvGamma(a + ¥2, B + % x?)

x ~ Bernoulli(p=z) z ~ Beta(a, B) z|x~Beta(a+x, B+1-x)

For a list of conjugate pairs: https://en.wikipedia.org/wiki/Conjugate_prior



Approximate inference

« Most of the time, exact inference is not possible
- Have to resort to approximate inference

« Two ways of doing this

« Approximate inference by optimization
« Approximate inference by sampling



Approximate inference by optimization
(aka Variational inference)

» Can't evaluate posterior P(0 | y) directly
e Strategy. approximate it with some distribution q(0)

All functions

‘Nice’ functions Q

p(6 |y)’ a’(6)

‘Distance’ measure




Choices

All functions

‘Distance’ measure

1. Choice of distance measure is KL-divergence
2. Choice of ‘nice’ functions is often the mean-field approximation
3. Choice of optimization procedure is coordinate ascent



Objective: minimize distance

D[ Q@) lIpzIx) ] = -E, o[ log p(zlx) ]

Q(z)
= —EZMQ[ log p(z,x) - log Q(z) ] + const.
- - J

ELBO (evidence lower bound)
Lower bound on log p(x)



To minimize distance, perform coordinate ascent

(a) o (b)

(c)




Free energy

* Free energy Is the ELBO!

* Brief explanation:

The world’s generative model,
- T a joint distribution over observations,
P {'{}* 5, I, d, b" d’ ﬁ :I outcome probabilities, state-related
variables, and the agent’s policies

The agent’s approximation of the

Q (Ei -ﬂ:-.- ﬂﬁ E]e dq- ﬂ] generative model

Agent’s objective: minimize KL(P || Q) = maximize ELBO = minimize free energy



Approximate inference by sampling

« Can’t evaluate posterior P(0 | y) directly
« Strategy: draw samples from the posterior



Markov Chain Monte Carlo (MCMC)

pasery

Stanistaw Ulam



Monte Carlo inference

e Ve wantto sample from some distribution
o Inthis case, a posterior p(z|x)

e \/Vecan'tsample from p directly, but maybe we can evaluate it
o  Ormaybe we can only evaluate an unnormalised version of it, e.g. p(z, X)

Take samples from some other distribution (e.g. prior) and transform/reweight/etc.
them so that they become samples from the posterior



Sampling techniques

« Many different ways to sample
 Importance sampling
* Rejection sampling
« MCMC (Markov Chain Monte Carlo)
* Gibbs sampling

[ 5 \ce samping - _
« HMC

* NUTS

-



A Markov Chain

A random walk in which the next step depends only on where you are now

Markov state diagram of a child behaviour
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MCMC methods

* |dea: take random walks in the parameter space to sample from
the target distribution




MCMC convergence

 To ensure that the final samples
Indeed come from the target
distribution, we need to satisfy a
few conditions

* Detalled balance: eventually
converges to the target distribution

» Ergodicity: able to get to any point
In parameter space In finite time




Some MCMC algorithms

1. Random-walk Metropolis-Hastings

- Propose new candidate states, accept/reject the proposal with some
probability

2. Gibbs sampling

- For n parameters, fix (n — 1) of them and sample from the conditional
distribution

3. Hamiltonian Monte Carlo

- Make use of extra momentum variables to flow through parameter
space



Demo of MCMC In action



How can | get started with these
Inferences for my data analysis?



Stan will help you!

State-of-the-art platform for statistical modeling

Supports:

« Full Bayesian statistical inference with MCMC sampling
(NUTS, HMC)

« Approximate Bayesian inference with variational
inference (ADVI)

Interfaces with most popular data analysis languages
(Python, MATLAB, R)




Simple syntax

data {
int<lower=0> N; // number of neurons measured
real yI[N]; // firing rates

// prior parameters
real mu O;
real<lower=0> rho O0;
real<lower=0> alpha 0;

real<lower=0> beta 0;



Simple syntax

parameters {
real mu;
real<lower=0> tau; //precision

model {
tau ~ gamma (alpha 0, beta 0);
mu ~ normal(mu O, 1 / (rho 0 * tau));
for( n in 1:N )
v[n] ~ normal (mu, 1 / tau);



